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Abstract

*" Diagnostics based on robust R-estimates of regression coefficients are
developed. These methods are not as sensitive to influential points as least
squares diagnostics. In data sets with several influential points,
diagnostics based on a robust fit have a greater chance of detecting
interesting cases for further inspection. Robust analogues of the internal
and external t statistics, DFFITQ, DCOCK, and DFBETAS are developed and

illustrated on two data sets. , ) “ - -
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1. Introduction

A regression model is at best an approximation to the reality of the
situation under study. Regression diagnostics are invaluable tools for
detecting data points at which the model and the data differ greatly (such
points are called outliers) as well as data points which have a large
influence on the model. 1In the last ten years there has been much interest
in the area of regression diagnostics. A testament to this is that a number
of diagnostics are currently available in all the major statistical computing
packages. Regression diagnostics are discussed in detail in the books by
Cook and Weisberg (1982) and Belsley, Kuh and Welsch (1980) and in the review
articles by Hocking (1983), Chatterjee and Hadi {1986), and Hettmansperger
(1987).

It is well known, however, that a few influential points can spoil the
least squares fit of a linear model. In data sets with several influential
points, some of these points can exert such a strong influence on the least
squares fit that other influential points are masked and, hence, are not
detected by these diagnostic procedures. The data sets discussed in Section
1 are illustrations of this effect. Examination of data sets containing
influential points, based on estimates that are impaired by such points, is a
serious drawback to diagnostics based on least squares. In these
circumstances, the traditional diagnostics suffer a lack of detection power.

Over the last ten years, the area of rcbust regression has also beccme a
rapidly expanding field. Some of the major statistical packages now contain
some form of robust regression. Using a robust fitting method reduces the
effect of influential points on the fitted model. However, a number of
authors point out that the exclusive use of robust methods can obscure
important. substantive problems with the model which in some situations are
revealed by regression diagnostics based on least squares; see Cook {(1986)
and Chatter jee and Hadi (1986).

In this paper we develop diagnostics based on v~buct R-estimates of
regression coefficients. Similar methods can be used to develop diagnostics
based on other ~lasses of robust estimates. These cstimates are noo as

sensitive to influential points as least squares and the resulting diagnostics
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appear to be more powerful than the least squares based methods. In data sets
with several influential points, the diagnostics based on the robust fit
therefore have a greater chance of detecting influential points than those
based on least squares. In Section 3, we develop robust analogues of the
internal and external t statistic, DFFITS, DCOOK, and DFBETAS. As Sections 2
and 3 demonstrate, their geometry 1s quite similar to their least squares
counterparts. The last four techniques measure the impact of ar individual
case on the robust fit. 1In the examples of Section 4, these four techniques
are able tco detect some obvious outliers whereas the same techniques based on
least squares are not. The robust diagnostics can thus be used to flag
potential cases of trouble and should serve as quite useful tools in linear
model fitting.

In Appendix A, we present a unified development of some of the more
useful least squares diagnostics. The derivations are based on the mean

shift outlier model; see Cook and Weisberg (1982, p.20).

2. Notation and R-Estimates
Consider the linear model

Y=ol +X 8 +e (2.1)
where 1 denotes an nx1 vector of ones, X. is an nx{p~1) centered design matrix
having full column rank, « is an intercept parameter, g is (p-1)x1 vector of
parameters, and e is an nxl vector of random errors whose components are
i.i.d. with distribution function F and density f. Letting X = [1: XC] and b

= {(a,8')", we can write the model as

Y=Xb+e.
Discussions of R-estimates for this linear model can be found in
Hettmansperger and McKean (1977). Briefly, consider Jaeckel’'s (1972)

dispersion function which is given by

AV
rd

D(#) = TalR(Y -u PYMY - T ES (
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where X“i' is the ith row of XC, R(ui) denotes the rank of U; among U 4. ..,u
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and {a(i)} is a set of scores which are generated as
Sy = gL
al(i) = w(n+1) (2.3)
where ¢ is a nondecreasing function defined un (0,1) such that fe(u)du = O

and fmz(u)du = 1. Examples of such score functions are the Wilcoxon, ¢{u) =

JT?(u—%), and the sign scores ¢(u) = sgn(u—%).

Jaeckel (1972) showed that D is a continucus, convex function of g and

proposed estimating 8 by g where D(8p) = min D(£ ). McKean and
8

Hettmansperger (1976) proposed testing subvectors of 8 by using the reduction
in D(R) due to fitting the full and reduced models. Algorithms for obtaining

ER can be found in McKean and Hettmansperger (1978) and Osborne (1985).
Version 6 of MINITAB contains commands which return éR'

Under mild regularity conditions, found in Heiler and Willers (1979), éR
satisfies
B = 8+ T(X"X) X "a(R(e)) + o (1) (2.4)
where a(R(e)) denotes the vector with components a(R(ei)) and 7 is a scale

parameter defined by

' -1
7oz Jotuy(~ ELE (W lyg,, (2.5)
f(F~t(u))

Discussions of consistent estimates of v based on the residuals Y - XCéR can

be found in Koul et al. {1987) and Aubuchor and Hettmansperger (1988). Under
these regularity conditions X'a(R(e)) is approximately Np_l(Q,XC'XP); hence,

-

8 is approximately Np—1(E’Tz(Xc'XC)-1)' (2.6)

Note if XC = [chlxzc] and ch and ch are orthogonal, i.e. Xxéxzc = 0,

then ng and EzR are asymptotically independent. While this does not imply,

in finite samples, that the R-estimates of 51 are the same in the reduced and
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full models, we have found in practice that the estimates do not differ by
very much. For use in Section 4, we will term this approximate orthogonality.
Also, since ranks are invariant tc constant shifts, the intercept

parameter cannot be estimated from D{g). If symmetry of the error

distribution seems to be a tenable assumption, then scores satisfying
¢(1-u} = —9(u) (2.7)

are suitable; for instance, both the Wilcoxon and sign scores cited above
satisfy this condition. Then the intercept can be estimated by using a one

sample location R-estimate which corresponds to the chosen score function,

see McKean and Hettmansperger (1978). Let ap denote this estimate and let bp

= (aR,gé)'. Under regularity conditions which include symmetry o. the

distribution of the errors, bR is approximately Np(byfz(X'X)_l)-

If symmetry of the error distribution is not tenable then, to avoid its
assumption, we take the intercept to be the median of the distribution
Fly-x'#) and estimate the intcrcept by
;* = med{Y-—x.'h }

= i XicBR)

Under the same regularity conditions as cited for (2.4}, we have

€ 2
1'a (e) + op(l) (2.8)

where ¥ = (2£(0))™t and a*(ei) = sgn(ei). Estimation of ¥ is discussed by

McKean and Schrader (1984). It then follows that

;* 7*2 o'
~ is approximately N_((% ) 3 - )
) pE 0 Ay
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3. R-Diagnostics

3.1. Internal R-studentized residuals.
Similar to the least squares residuals, the variance of the R-residuals,

ep i’ depend on both the linear model and the underlying variation of the

?

errors. The internal studentized least squares residuals, see Appendix A,
have proved useful in diagnostic procedures since they correct for both the

model and the underlying variance. The internal R-studentized residuals

Jdefined below, (3.5), are similarly standardized R-residuals.
As discussed in Section 2, let a* and ER denote the R-estimates of « and

*1 - XoéR' In order to standardize

£. Denote the residuals by ep = Y - «

these residuals we need an estimate of the variance-covariance matrix

Cov(gR). From Appendix B, equation (B.9), we have the approximation
op 2 (Y-la=X g) - ~*Ja* - 7H a (3.1)
o = (¥-le-X ) - ~Va’ - “Ha 2.

where g* and a denote the vectors g*(g) and g*(R{g)) given in the expressions

1w

(2.1) and (2.8). Throughout this paper = refers to first order
approximations as developed in Appendix B. As shown in (B.1) of Appendix B,

an estimate of the variance-covariance matrix of ep is

& - 2T o1k oy

S = o°{1 li kzﬁc) (3.2,
where K, = (vF/m22s%/m%)-1)

K, = (v/0)%((28/7)-1)

x o1 -

¢° = ap Zleg, il
and (;:—]—D(é)

n-p R’*

The estimators - and ; are discussed in Section 2 and D(&R) is defined by
(2.2).




To cumplete the estimate of the Cov(ep) we need an estimate of ¢°. One

possibility is to use the least squares estimate o . This is a consistent
estimate provided the errors have finite variance. There are other

possibilities but they involve assumptions on the form of the distribution;

A

for example, 76 is a consistent estimate provided the errors have a normal
distribution. For robustness, a mildly trimmed or winsorized mean square

error could be used, see Shoemaker and Hettmansperger (1982).

It follows from {3.2) that an estimate of Var(éR i) is

- > 1 )
o"(1 - K, R IPF {3.3)

2
=3 .=
R,1

B - ] ' -1
where his = xiC(XCXC) Xice

Note that in the least squares case SLS,? = oz(l—hi) and h; = nt o+ h,. the
ith diagonal element of the least squares projection matrix, which is the ith
leverage value. Hence K1 and K2 can be viewed as corrections due to using the
rank based fitting method. If the error distribution is symmetric ({3.3)

reduces to

T2 _ ‘a2 o
SR,i = ¢ (1_h2hi)' (3.1

we define the internal R-studentized residuals as

~

[V
(o}

e .
'R,i = wB*i izl,...,n (3.
SR, i

where SR, i is the square root of either (3.3) or (3.4) depending on whether

one assumes an asymmetric or symmetric error distribution, respectively.

As with their least squares counterparts, we think the chief benefit of
the internal R-studentized residuals is their usefulness in diagnostic plots,
such as plots of residuals versus fitted values and q - q plots. These
residuals are corrected for both the design and the underlying variance.

Tt is interesting to compare expression (3.4) with the estimate of the

variance of the least squares residual, uz(l—hi). The correction factor K,
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depends on the score function ¢(-) and the underlying symmetric error

distribution. If, for example, the error distribution is normal and if we use

normal scores, then K2 converges almost surely to l. In general, however, we

will not wish to specify the error distribution and then K, provides a natural

ad justment.

3.2. R-estimates for the mean shift outliers model.

The R diagnostics that follow depend on the mean shift outlier
model which is discussed in detail in Appendix A. Briefly, for the ith case,
the mean shift outlier model is
Y :x’t_>+_qiei+g (3.6)
where gi is an nx1 vector of zeroes except for its ith component which is 1.
A formal test that the ith point is an outlier involves testing the
hypotheses Hg: Gi:O versus H,: Gi¢0.

Below we obtain an R-estimate of Gi and an estimate T(i) of =,

based on the model (3.6). These estimates will play a key role for the
R-diagnostics that follow.
One way of obtaining an R-estimate of Oi involves fitting this model.

Thi: would be computationally expensive since n such models need to be fit.
Another way would be to consider aligned rank procedures. These procedures
remove the effects of nuisance parameters (in this case b) by considering the
residuals from the reduced model (in this case éR from the reduced model Y =
Xb + e); see Puri and Sen (1985) for a discussion of aligned rank procedures.
It is convenient to use the second form of the mean shift outlier model

(A.3) given by Y = Xb* + dle, + e, where d} = (I-B)d;, and H is X(X'X)7*X",

In this orm X and gf are orthogonal and McKean (1975) has shown that this

helps eliminate bias in the estimates. This is the model Cook and Weisberg

(1982) used in obtaining the least squares external t diagnostic. Note that
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the first part of the model xp* is a vector in the column space of X. Hence
the R-residuals from the fit of this reduced model are still éR'

Our R-estimate of ei is GR i which is a solution of A;(Gi) = 0 where
1

A¥6.) = T d.%a(Riey .-6.d.%) (3.7)
11917 7.2 %2R, 57010 ). i

Thus the problem has been reduced to finding n simple regressions.
Furthermore these regressions are easily obtained. If we view iLhe LHS

of (3.7) as a function of 8, it crn be shown that it is a decreasing step
function of 6,. The solution follows quickly using a simple linear search

routine. A procedure which works quite well is the Il'inois version of
regula falsi similar to the algorithm discussed by McKean and Ryan (1977).
The R-residuals fiom the fit of the second form of the mean shift

outlier model (A.3) are

- o, .4f (3.8)

Define ;(i) and ;*(i) as the estimates of v ard ¥ based on the residual

vector é*
o er-

Note that if we replace the above rank criterion by the least squares

criterion then we obtain the least squares estimate of CH by using a series

of simple regressions to find a multiple regression; see Draper and Smith

(1981, p.204).

3.3. RDFFIT.

Next, we consider a statistic that measures the first order
change in the R-fit of the ith case when the ith case is deleted. As in
Appendix B, the first order terms in the change in the R-fit of the ith case

when the ith case is deleted is

-~

RDFFITj Y,

R,i ~ Yp(i)

= QR,ihi' (3.9
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Equation (3.9) can be developed as follows: For the ith case, consider the

second formulation of the mean shift outlier model given by (A.3).

Appealing to tne asymptotic orthogonality, Yp i the R-fit of Y, in the
1
original model (A.l1), is the R-fit of the first term on the RHS of model

d ¥ is the R-fit of the second term on the RHS of model (A.J).

(A.3) and ® ii

R,i
Hence the R-predicted value of Y-1 in the mean shift outlier model is, to the

~

. . N X s -~ - .
first order, YR,i + eQ,idii' which can be expressed as

. - L : - ~
YR,i * Og,idii 7 [YR,i O, (Bdi) i) * 6 4

= [Yg,i79g, b} * @R, ;-

The term in brackets is, of course, the R-fit of the first term on the

RHS of the first formulation of the mean shift outlier model, namely (Xb), of

model (A.2). As noted in Appendix A, when least squares methods are used, the

least squares fit of this term is Ylg(i)' Similar to least squares, the

bracketed term

YR,; - QR,ihi' (3.100

YR(i)
Clearly, in order to be useful, RDFFTTi needs to be assessed relative to
some scale. The following R-diagnostics are formulations of RDFFITSi based on

appropriate scales.

3.1, RDCOOK and RDFFITS.

RDFFIT is a change in the fitted value; hence, a natural scale for
assessing RDFFIT is a ficted value scale. It follows from Appendix B, see
(B.5) and (B.6), that for the R-fit, assuming an asymmetric error
distribution,

)El’*2+h T

2
R, n e’

Var(y

Hence, based on a fitted scale assessment, we standardize RDFFIT by
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1/2
i)) .

(var(?R’
As noted in Appendix A, for least squares diagnostics there is some

discussion on whether to use the original model or the mean shift outlier
model for the estimation of scale. Cook and Weisberg (1982) advocate the
original model. In this case the scale estimate is the same for all n cases.
This allows casewise comparisons involving the diagnostic. Belsley, Kuh, and
Welsch (1980), however, advocate scale estimation based on the mean shift
outlier model. Note that both standardizations correct for the model and the
underlying variation of the errors.

X

Let v° and 7 denote the estimators of ¥ and * discussed in Section 2.

Our diagnostic in which RDFFI’I‘.l is assessed relative to a fitted value scale

with estimates of scale based on the original model is given Ly

K.)1/2 RDFFIT,
(p RDOOOK,)1/2 = = —
: (%2 (1)n, 2172

This is an R-analogue of (p DCOOK;)'/2 statistic proposed by Cook and Weisberg

{1982), see (A.9).

-~

Let ;*(i) and 7{i) denote the estimates of _ and 7 for the mean shift

nutlier model as discussed above. Then our diagnostic in which RDFFTTi is

assessed relative to a fitted value scale with estimates of scale based on the

mean shift outlier model is given by

RDFFIT,

(1r*2
n

— . (3.1
. T2, .,,1/2
(l)+hic’ (1))

RDFFI'I‘S,1 =

This is an R-analogue of the least squares diagnostic DFFITSi proposed by
Belsley et al. (1980); =ee (A.10) of Appendix A,
If the error distribution is assumed to be symmetiric, the R-diagnostics

are obtained by replacing Var(Yg ) with
1

. . . . . 3
see (B.6) of Appendix B. This eliminates the need to estimate -
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There is disagreement on what cutoff values to use for flagging
points of potential influence. As Belsley et al. (1980) discuss in some

deetail, DFFITS is inversely influenced by sample size. They advocate a
size~adjusted cutoff value of 2/p/n for DFFITS, which would lead to a 2/vn

cutoff value for (DCOOK)‘/z. Cook and Weisberg (1982, p.118) suggest a more
conservative cutoff value of 1. 1In the examples in Section 4, we will use the
more liberal value, realizing these diagnostics are only flagging potential
influential points that require investigation. A4s with the two references
cited above, we would never recommend indiscriminant deleting of observations
solely because their diagnostic values exceed the cutoff point. Riather these

are potential points of influence which should be investigated.

3.5. External tR—staListic.

The above diagnostics RDCOOK and RDFITS, assess the first order
change in RDFFIT relative to the R~fitted scale which is a T-scale, {(or a -

and ¥ scale under the assumption of an asymmetric error distribution). This
change in fit, however, is proportional to GR i Hence assessing eR ; on the
’ 1

T-scale is consistent with the scale suggested by the approximate distribution
of an R-estimate, see (2.6).

Note, that in the mean shift outlier model the leverage value of the ith
case is 1. As Huber (1981) showed, a necessary and sufficient condition for
the least squares estimates to be asymptotically normal is that the leverage
values go to zero uniformiy. Similarly, this is a sufficient condition for
the asymptotic distribution theory of the R-estimates. Therefore the

asymptotic theory for neither least squares nor R-estimates hold for the mean

N

shift outltier model. Nevertheless, the external t-statistic, tLS(i), (GLS

relative to its standard error), see (A.8), has proved to be an effective
diagnostic for least squares fit.

In analogy to the external tig-statistic, we propose the external

tR—statistic which is given by
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%, i
toli) = b (3.12)

Ty VIR

Although this is the standardization suggested by the asymptotic distribution
theory, in light of the above discussion, we do not propose it as a test for

Hy! 6=0 versus H,: 6#0. Instead we propose it as an alternative to the least

squares diagnostic t;o(i}. We are still assessing the change RDFFIT on a
q LS

r-scale. We further feel that v is a more ronust estimate of i than ¢ is of

o and we have found in practice that it appears to be better at flagging

potential points of influence than tLS(i).

3.6. RDFBETAS.

When the diagnostics RDFFITS or RDCOOK are large for, say, the ith case,
then we usually want to investigate the impact this case has on the
individual regression coefficients. Thus, we want to consider the

statistic we shall define as
RDFB‘E’I‘A.1 = QR - QR(i)
where pR i is the R-estimate of b in the mean shift model (A.2).

In order to obtain this statistic, first note that if XR is the

R-predictiui, cf ¥ in the original model, then the R-estimate of b is the

solution bR to the equation

that. is,

~

- Ty -1 |A
by = (X'X)7'X' Yp. (3.13)

In fact, most modern software obtains bR by first finding iR employirng a

convenient basis matrix of X; see, for example, Hettmansperger and Mckean

(1983, Section 4).
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Let y = [Xlgi] denote the design matrix for the mean shift outlier

model. Let iR i denote the R-fitted value of this model. Then according to
?

(3.13) ER(i) is the first p coordinates of the vector,

' -1 vA
) Yp -

From Section 3.2, (3.10), iR,i S Yo éR,id*

d;- Then using the result for the

inverse of a partitioned matrix (see p.27 of Searle (1971)) and the fact that

gt = (I-H)d;, we obtain after some algebra that

bp(i) £ By - (VX1 7'xi0p |

where 13 is the ith row of y. Hence

- ] -1 IA
RDFBETAi = (X'X) lieR,i'
To be useful RDFBETAi needs to be measured relative to a scale. Since

it is proportional to a difference in fitted values we shall choose a
r-scale. As in Section (3.1) if 7 is estimated by using the mean shift
outlier model. Then the diagnostic, defined for the jth component of
RDFBETA;, is

- . 1 -1
RDFBETASi’J = RDFBETAi/(T(l)J(XCXC)JJ)
Belsley et al. (1980) advocate a size adjusted cutoff value of 2//n for the

corresponding least squares diagnostic,

These diagnostics are straightforward to compute. Consider the diagonal

~

matrix GR = diag{eR’l,...,eR,n}. Define (p-1)xn matrix

RDFBETA

[by-Bg(1) ... bp-by(n)].

Tt then follows

rs ~1t
RDFBETA (XCXC) XOGR'

Note that each of the n-columns of RDFBETA is simply a least squares fit of a

column of G. They can be obtained quickly using the QR-subroutines in
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LINPACK; see Dongara et al. (1979},

4. Examples
The following two examples illustrate the power of the R-diagnostics
in detecting influential points in linear models. The R-estimates were
computed by the algorithm discussed in Hettmansperger and McKean (1883). To
compute the diagnostics we used the LINPACK subroutines SQRDC and SQRSL for
the numerical linear algebra parts, such as leverage values, projections, etc.

The R-estimate of 6; was computed as discussed in Section 3. The parameter -
was estimated as discussed in Koul et al. (1987) using the value of « = .80.
Example 1. The data for this example can be found in Morrison (1983, p.64}.

The response is the level of free fatty acid of prepubescent boys while the
independent variables are age, weight, and skin fold thickness. The sample
size 1s 41. Figure 1 depicts the residual plot based on the least squares
fit. From this plot there appears to be several outliers. Certainly the
points 12, 22, 26 and 9 are outlying and perhaps the points 8, 10 and 38. In
fact, the first four of these pouints probably spoiled the least squares fit,
obscuring the points 8, 10 and 38. This seems apparent from the residual
plot based on the Wilcoxon fit, Figure 2, where all seven points stand out.

Table 1 gives the values of the internal t, external t, DFFITS and

(DCOOK)I/Q, diagnostic statistics for both the least squares and Wilcoxon fit.

Using a2 cutoff value of 2 for the external t statistics and the suggested

cutoff values of .62 for DFFITS and .31 for (DCOOK)l/Z, the least squares
diagnostics flag only points 12 and 22 while the R-diagnostics flag all seven

points. Both R-diagnostics are necessary; for instance RDFFIT and (RDCOOK)l/2
flag point 8 while the external tR is at 1.84. Conversely the external tp

flags point 26 while the other two do not.

Table 2 displays the RDFBETAS. Using the suggested cutoff value
of .31, these statistics indicate an influential effect on at least one £ for
five of the above points and on the two exceptions, points 26 and 22, the

outcome is borderline. Note that RDFFIT is large for Bx at point 11,
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Although this point was not flagged abc 2, it is a point of high leverage;

i.e. h > 2p/n.

Note that in both residual plots, the low values of the residuals are
bunched together while the higher values are more dispersed; i.e., the
distribution of the residuals appears to be positively skewed. For a final

fit, then, we proceeded to use the bent R-score function given by

3 3

<ucil
¢(u) = 2 kS
-2 05uss

which is suited for positively skewed error distributions with heavy right
tails; see McKean and Sievers (1988) for a discussion of these scuies. I its
residual plot, Figure 3, the outliers stand out more than in the previous fits
and it does appear to be more scattered indicating a better fit. The
regression estimates for all three fits appear in Table 3. They do differ,

especially the estimates of ﬁa. Table 4 displays the diagnostics for the bent

score fit. Note that the above seven points are flagged as well as point 11.

Example 2. The dataset of this example is the stack-loss data presented in

Daniel and Wood (1971, p.60). It has been discussed in several articles on
robust methods, for instance, Andrews (1974) and Hettmansperger and McKean
(1977). 1In the latter article, robust residuals plots are presented for fits
using various R-scores. It appears from these plots that observations 1, 3,
1, and 21 are outlying points.

In Table 5 we present the diagnostic measures for both an R and a least
squares fit, (the R-fit used Wilcoxon scores). The R-diagnostics clearly

indirate that these points need further investigation. RDFFIT exceeds
Z(p/n)l/2 = .87 on all 4 of these points, the external t exceeds 2.0 on all
but the first point (but even here it is at 1.91), and (RDCOOK)i/2 exceeds

2//n = .41 on points 1 and 21. From the RDFBETA values, points 1 and 3 had an
impact on ﬂx while the remaining two points had an impact on both ﬁx and Bz.

None of the R-diagnostics for the remaining 17 points exceeded the cutoff
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values.

In contrast, for least squares, only observation 21 was flagged by DFFITS

while observations } and 21 were flagged by the least squares external t

statistic. The remaining two were not flagged.

5. Conclusions

Diagnostics are an extremely important part of many data analyses.
Least squares diagnostics have been effective in detecting and identifying
aberrant cases. These methods fit most naturally with least squares based
inference. Currently, there are several approaches to robust inference in the
linear model. The present paper suggests natural diagnostic quantities to be
used in conjunction with robust rank-based inference. The robust diagnostics
appear to have some advantages. In the examples, they were able to flag
cases of potential trouble that were passed over by least squares

diagnostics.

Appendix A.
In this appendix we derive the least squares diagnostic tools (internal
and external t, DFFITS, DCOOK, and DFBETAS) from a common source (the mean
shift outlier model). We also establish some of the results we need in the
derivation of the R-diagnostics.
Consider the linear model,

Y=Xb + e (A.1)

which is defined in Section 2. The mean shift outlier model for the ith data

point is defined by

Y=Xb+doe +e (A.2)

where gi is a nx1 vector of zeroes except its ith component is 1.
The parameters ei, i=1,...,n, play a key role in the diagnostics.
There are several ways of writing model (A.2). Following Cook and

Weisberg (1982) and letting gf z (I—H)gi, where H is X{X'X)"!X', the model can
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be written as
Y = xb* + d¥e. + e. (A.3)
Y b d;9; t &
Since X and QI are orthogonal, the least squares estimate of Gi is
X, ~
~ _4'Y  eg g
8 = %% - T-h., * (A.1)
Qi gi 11
The second equality holds since di'd} = 1-hy; and d}'¥ = d;" (I-H)Y.

Next we want to connect ei with the statistic DFFITi which is the

difference in the fitted value of Y; at the model (A.1l) and when the ith
point is deleted. Let QLS,i be the fitted value of Y, at model (A.1) and let
§LS(i) be the fitted value of Y, when the ith point is deleted. Then

DFFIT; = Yg ; = Yigli)-
In order to obtain §LS(1)’ we need not delete the point and refit since it

follows from Cook and Weisberg (1982, p.33) that
Vig(i) = Y, - 6,

hence,

DFF;Ti = YLS,i - (Yi—ei)

where the middle equality follows from (A.4).
The least squares diagnostics follow from different standardizations of

DFFITi. For the t-statistics note from (A.4) that,
A _ .2 _
Vdr(ei) =z o%/(1 hii)'

If we standardize DFFI’I‘-l by using the estimate a2 of ¢® based on model

(A.1) and use (A.31) we then get the internal t statistic given by
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DFFIT. 6. er o
i = L - Sl (A.6)
hii(o//l—hii) G/JI‘hii 0/1_Hii

= Is,i
This is called the internally studentized residual; see Cook and Weisberg
(1982, p.18).

Next suppose we standardize DFFIT, by the estimate s?(i) of ¢ based on

the mean shift outlier model (A.2). As derived in Cook and Weisberg (1982,
p.20)

(n-p-1)o®-e;%/(1-h, ;) (A7
. LT
n-p-2

The corresponding standardization of DFFIT; is,

s2(1) =

DFFITi _ 8,

hii(s(i)//I—Hii) S(i)//I‘Hii

(A.8)

= tLS(i)
This is the externally studentized residual; see Cook and Weisberg
(1982, p.20). This is also the t-statistic for testing HO: ei:o versus

HA: 9#61 in model A.2.

The above standardizations of DFFIT; are consequences of considering it
in terms of 0. Suppose instead we standardize it in terms of fitted values.
Note that

” -
Var(Yi) =G hii‘

If we standardize DFFITi by using 02 as our estimate of 02 we get

~

EFFITi 3 9/§ii
Ovhll g
i
= PLS,lJl—hl] (A.9)




= ,p DCOOCK.
These equalities follow from (A.d1) and (A.6). See Cook and Weisberg
(1982, p.117).
If on the other hand, we standardize it by using sz(i) as our estimate

of 62 we get

DFFIT; _ 91}’}_’%1 (A.10)
S(l) 1‘11 Si1
= DFFITSi.

This statistic was proposed by Belsley et al. (1980).

Before considering DFBETA, for Section 3 we need the following result.
Under the mean shift outlier model (A.2), it follows immediately that the
predicted value of the ith observation is Y- Hence under this model we have

~

Yi = Kblig; *+ 9

where (Xb)LS ; 13 the least squares estimate of the first term on the RHS of
'

{A.2). Since éi = Yi - §LS(1) we have that

~

\}S(i) = (Xb )LS,i'

Thus Yigf{i) is also the least squares estimate of the first term on the RHS

of model (A.2).
When DFFITS is larde for, say the ith point, usually we want 1o

investigate its impact on the individual coordinates. Consider the diagonal

~

matrix G = diag{él,...,en}. Let éLS(i) denote the estimate of b when the ith
point is deleted. Then the (p-1)xn matrix of changes in the coordinates is
given by

DFBETA = [b-b g(1)...b-byg(n)].
It follows from Belsley et al. (1280, p.13) that

DFBETA = (X'X)7iv'q.
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These can be obtained quickly using the QR-subroutines in LINPACK.
As with DFFITi, we can standardize DFBETA in several ways. The one we

shall note here is to use s{i) to estimate o. This leads to

b.-b (i)

DFBETS; g; ; = —L1—1 = .
JJ JJ

(DFBETA)i‘i

which a diagnostic proposed by Belsley et al. (1980, p.13).

Appendix B

In this appendix, we develop the approximations up to terms of order n™*!

for the variance-covariance matrices Cov(gR) and Cov(yR). We will
concentrate on the case of asymmetric error distributions and state the

results in the symmetric case. We will use the notation H, = PX =
“c

' ~1y o0, - - -1 ‘ iy . .
X (X X,) °X.' and J = P = n (1 1') along with h;  the ith diagonal element

of Hc' Then the leverage of the ith case is hi =n !+ hic‘ The main

results are

- s 2 ,
Covieg) = o®{I-K J-K,H_) (B.1)
where K_ = (7%/0)2(26%/7%-1) (B.2)
K, = (7/0)%(28/7-1)
s* = E(e.sgn e;)
1 1
) =

E(e;a(F(e;))]

. . X . . .
0“ is the error variance and r", v defined in Section 2.

Hence,

, - 22 , =1
Var eR,.1 =g (1—h1n —hzhic)' (B.3)
‘ In the case of a symmetric error distribution,
ar e L G2 (1K
Var eR,i = g% (1 hzhi). (B.4)
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Recall Cook and Weisberg (1982, p.11), that in the least squares case,

Var ers.i - oz(l—hi) so that K1 and Kz are correction factors due to using

the rank score fitting algorithm.
Likewise

*23 4 2y (B.5)

te

Cov(XR)

o s -1 %2 2
Var YRi =n T + hicT ,
while in the symmetric case,

Ygi z hirz. (B.6)

Before giving a sketch of the derivations of these formulas, we discuss the

Var

estimation of the parameters appearing above. Natural estimates of s¥ and ¢

are
A* n -~
&7 = —— = LT
n-p 1§1IPR11| (R.7
-~ 1 2 ~ ~
§ = 7p Z e;a(R(e,))
= L peg,) (B.8)
n-p R’ *
where D(g) is defined in (2.2). Estimates of +* and * are referenced in

Section 2.

We now outline an approximation for Cov(en), the variance-covariance
=R

~

matrix of epy the vector of residuals., Using (2.1) and (2.8),

~

ep 1Y - la+r™nTr 1 a¥) - X (per (XX )XLa)

where a = a(R(e)) and g*' = (sgn éx,...,sgn én)'

Then

~

: L L
ep - e - 7 Ja .HCQ.

Now Ea = 0 = Eé* and hence
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Cov(; ) = Efle e' - 2r*e a¥'J - 27e a'H

._'R - = = = = ‘e C

+ ?*2J§*E_L*'J + ZT*TJQ,*Q'HC

2 '
+ 7 HCQ a HC}.

[ hd x_Xx, X, - X ¢ | ST
Note that Ea a' = I = Ea"a”'. Further Eea ' = 6'1, Ee a' = 6I, and Ea a' =

i
==

¢l for a constant ¢. Now using J'J = J, H(':HC J'HC = 0 we have

-~

- %2 26
Cov(gR) =0l - 7% (H

>

- I (& - D,

[
Then (B.1), (B.2) and (B.3) follow immediately. The formula (B.5)
follows in a similar fashion from i z la + X8 + f*Jgt + 7H.a. Similarly for

formulas (B.4) and (B.6).
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Table 1. Diagnostics for R (Wilcoxon Scores)
and Least Squares fit of Example 1.

Case Int(R) Ext(R) RDFFITS RDCOOK 1Int(LS) Ext(LS) DFFITS DCOOK
0.72 0.80 0.20 0.10 0.49 0.49 0.12 0.06

-0.79 -1.00 -0.34 -0.17 -1.19 -1.20 -0.40 -0.20

-0.16 -0.19 -0.05 -0.03 -0.53 -0.53 -0.15 -0.07

~-0.64 =-0.84 =-0.19 -0.i10 -0.96 -0.95 -0.22 -0.11

0.69 0.76 0.28 0.14 0.42 0.42 0.15 0.08

0.12 0.13 0.03 0.02 -0.21 -0.21 =-0.05 -0.02

(SRS
= O ©O© 0 N O U b WD~

]

O

\l

[ (8]

]

o

. .92 -0.32 -0.17 -1.07 -1.07 -0.37 -0.18

1.51 1.84 0.67 0.32 1.16 1.17 0.43 0.21

2.07 2.69 0.56 0.26 1.74 1.79 0.38 0.18

1.54 1.94 0.62 0.29 1.12 1.13 0.36 0.18

0.93 1.05 0.53 0.25 0.56 0.56 0.30 0.15

12 3.18 4.13 1.03 0.47 2.84 3.17 0.79 0.35
13 -0.56 -0.65 -0.27 -0.14 -0.77 -0.77 -0.35 -0.18
14 .90 -0.00 =0.0v ~-0.00 -0.34 -0.34 -0.09 -0.04
18 0.21 0.28 0.08 0.04 -0.12 -0.12 -0.04 -0.02
16 0.66 0.78 0.18 0.09 0.31 0.31 0.07 0.04
17 -0.03 -0.11 -0.02 -0.01 -0.34 -0.34 -0.07 -0.03
18 -0.72 -0.91 -0.26 -0.14 -1.12 -1.13 -0.32 -0.16
19 -0.43 -0.56 -0.24 -0.13 -0.83 -0.82 -0.36 -0.18
20 -0.66 -0.86 -0.30 -0.16 -1.00 -1.00 -0.35 -0.17

[
v
]
O
D
o
]
(e}

.80 -0.13 -0.07 -0.90 -0.89 -0.15 -0.07
.80 0.61 0.30 2.26 2.40 0.53 0.25
.19 0.03 0.02 -0.11 -0.10 -0.02 -0.01
.90 -0.22 -0.12 -1.09 -1.09 -0.27 -0.13
.39 -0.14 -0.07 -0.49 -0.49 -0.18 -G.08

NN
N b LN
[

O O O N
W ~N = D
N N O W
[

O O O N

26 1.73 2.06 0.43 0.21 1.51 1.53 0.32 0.16
27 -0.76 -0.96 -G 19 -0.10 -1.09 -1.10 -0.21 -0.11
28 0.47 0.58 0.14 0.07 0.24 0.24 0.06 0.03
29 1.00 1.27 0.39 0.19 0.76 0.75 0.23 0.12

w w
- O
] 1
o o
~N o
0
] ]
o O

.59 -0.18 -0.09 -0.71 -0.70 -0.22 -0.11
.97 -0.20 ~0.10 -1.05 -1.05 -0.22 -0.11
.24 -0.07 ~-0.04 -0.36 -0.36 -0.11 -0.06
.02 0.24 0.12 0.57 0.57 0.14 0.07
.68 -0.15 -0.08 -0.81 -0.81 -0.18 -0.09
.86 -0.23 -0.12 -0.98 -0.97 -0.26 -0.13
.13 -0.13 -0.07 0.18 0.18 0.19 0.08

W W Wwww
D O N
[ 1
O O O O O
O O U 00
N W 00 b O
[ |
O O O = O

37 0.67 0.76 0.20 0.10 0.49 0.49 0.13 0.06
38 1.64 1.95 0.82 0.40 1.27 1.29 0.54 0.27
39 0.89 1.01 0.41 0.21 0.73 0.73 0.30 0.15
40 -0.30 -0.41 -0.21 -0.11 -0.51 -0.50 -0.29 -0.15
41 0.07 0.10 0.04 0.02 -0.09 -0.08 -0.03 -0.02




Table

2. RDFBETAS { Wilcoxon Scores) for Example

Case

W 0 N O O bW

B W W W W W W W W W NN RDDNRNDNDNDRNDRD = - - - b s e
= O O 00 N O O b WP O OO NG WP O W OONOO O LW = O

Incep.

0.08
-0.09
-0.04
-0.13

0.16

0.02
-0.16
0.43
0.34
0.47
0.14
0.83
-0.09
-0.00

0.06

0.06
-0.01
-0.09
-0.02
-0.10
-0.04
-0.16

0.01
-0.04

0.01
-0.06
-0.02
-0.08
-0.24

0.04

0.08

0.04
-0.06

0.07

0.04

0.06
-0.14
-0.19
-0.34

0.12
-0.03

Age

-0.
.20
.02
.07
.11
.02
.27
.00
.14
.17
.44
.48
.01
.00
.02
.07
.00
.09
.13
11
.00
.04
.01
.07
.06
.11
.02
.05
.25
.11
.12
.01
.16
.10
.16
.01
.09
.32
.28
.22
.02

08

Weight Skinfold
.02
.25
.02
.06
.09
.00
.20
.49
.08
.19
.49
.15
.20
.00
.05
.08
.01
11
.21
.26
.02
.05
.01
.12
.07
.25
.00
.05
.02
.13
.02
.04
.11

0.05
0.13

O O O O O

.01
.05
.08
.07
.14
.01

.11
.25
.00
.06
.17
.00
.09
.21
.17
.15
.27
.18
.26
.00
.03
.13
.00
.20
.19
.09
.00
.29
.01
.17
.05
.06
.08
.04
.14
.12
.03
.00
.00
.02
.01
.10
.01
.57
.07
.05
.01

1.




Table 3 Fits for Example 1,
(standard error in parentheses).

Fit Incep. Age Weight SkinFold  Scale é or 7
Least Squares | 1.70 (.327) -.0021 (.003) -.0152 (.005) .2045 (.166) 215
R-Wilcoxon | 1.49 (.273) -.0011 (.003) -.0154 (.004) .2739 (.137) 178
R-Bent Score | 1.43 (.247) -.0009 (.002) -.0152 (.004) .3079 (.124) 159
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Table 4. Diagnostics for R (Bent Scores)
for Example 1.

Case Int(R) Ext(R) RDFFITS RDCOOK

1 0.67 1.07 0.27 0.14
2 -0.77 =0.97 -0.33 -0.17
3 -0.14 -0.13 -0.04 -0.02
4 -0.64 -0.77 -0.17 -0.09
5 0.64 0.97 0.35 0.18
6 0.11 0.32 0.07 0.04
7 -0.72 -0.94 -0.32 -0.16
8 1.53 2.16 0.79 0.38
9 2.09 3.14 0.66 0.30
10 1.58 2.57 0.82 0.35
11 0.89 1.13 0.61 0.24
12 3.20 5.20 1.29 0.53
13 -0.61 ~-0.71 -0.33 -0.17
14 0.01 0.18 0.05 0.02
15 0.22 0.46 0.13 0.07
16 0.67 1.07 0.25 0.13
17 -0.03 0.13 0.03 0.01
18 -0.68 -0.88 -0.25 -0.13
19 -0.41 -0.52 -0.23 -0.12
20 -0.63 -0.80 -0.28 -0.15
21 -0.61 -0.73 -0.12 -0.06
22 2.35 3.30 0.72 0.34
23 0.13 ¢.34 0.06 0.03
24 -0.71 -0.89 -0.22 -0.12
25 ~0.41 -0.52 -0.19 -0.09
26 1.69 2.43 0.851 0.24
27 -0.75 -0.92 -0.18 -0.09
28 0.43 0.80 0.19 0.09
29 0.97 1.48 0.46 0.21
30 -0.57 -0.64 -0.20 -0.11
31 -0.80 -0.95 -0.20 -0.11
32 -0.27 -0.34 -0.10 -0.05
33 0.83 1.35 0.32 0.15
34 -0.61 -0.71 -0.16 -0.09

35 -0.69 -0.85 -0.22 -0.12
36 -0.35 -0.39 -0.39 -0.19
37 0.61 1.09 0.28 0.13
38 1.67 2.46 1.04 0.46
39 0.81 1.39 0.57 0.27
40 -0.32 -0.36 -0.19 -0.09
41 0.00 0.21 0.08 0.04
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Table 5. Diagnostics for R (Wilcoxon Scores)
and Least Squares fit of Example .2.

Case Int(R) Ext(R) RDFFITS RDCOOK Int(LS) Ext(LS) DFFITS DCOOK
.42 1.93 1.28 0.45 1.19 1.21 0.79 0.39

[y
-

\ 2 -0.50 -0.69 ~-0.48 -0.23 ~0.72 -0.71 -0.48 -0.24
' 3 1.61 2.13 1.02 0.37 1.55 1.62 0.74 0.36
4 2.22 2.79 1.15 0.40 1.88 2.05 0.79 0.36
5 -0.45 -0.41 -0.12 -0.05 -0.54 -0.53 -0.12 -0.06
6 -0.75 -0.79 -0.24 -0.11 -0.97 -0.96 -0.28 -0.14
7 -0.55 -0.61 -0.32 -0.15 -0.83 -0.83 -0.44 -0.22
8 -0.20 -0.19 -0.10 -0.05 -0.48 -0.47 -0.25 -0.13
9 -0.71 -0.77 -0.31 -0.14 -1.08 -1.05 -0.42 -0.21
i 10 0.21 0.18 0.09 0.05 0.44 0.43 0.21 0.11
} 11 0.55 0.55 0.25 0.12 0.88 0.88 0.38 0.19
1 12 0.51 0.70 0.38 0.17 0.97 0.97 0.51 0.26
} 13 ~0.72 -0.87 -0.38 -0.16 -0.48 -0.47 -0.20 -0.10
14 -0.28 -0.32 -0.16 -0.07 -0.02 -0.02 -0.01 -0.00
15 0.71 0.84 0.41 0.19 0.81 0.80 0.38 0.20
16 0.24 0.41 0.15 0.08 0.30 0.29 0.11 0.06

17 -0.33 -0.31 -0.26 -0.12 -0.61 -0.60 -0.50 -0.26
18 0.00 0.00 0.00 0.00 -0.15 -0.15 -0.07 -0.03
19 0.07 0.05 0.03 n.01 -0.20 -0.20 -0.09 -0.05
20 0.52 0.47 0.16 0.07 0.45 0.44 0.13 0.07
21 ~3.15 -2.94 -1.92 -0.83 -2.64 -3.33 -2.10 -0.83
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Figure 1. Residual plot for LS fit of Example 1
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Figure 2. Residual plot for Wilcoxon fit of Example 1
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Figure 3. Residual plot for Bent Score fit of Example 1
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